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Abstract 

 

Each year the U.S. government makes significant investments in improving weather forecast 

models. In this paper we use a multidisciplinary approach to examine how utilities can benefit 

from improved wind-speed forecasts to more efficiently use wind-generated electricity and 

subsequently increase economic activity. Specifically, we examine how improvements to the 

National Oceanic and Atmospheric Administration’s (NOAA) High-Resolution Rapid Refresh 

model (HRRR) wind forecasts can provide 1) cost savings for utilities, and 2) increases in real 

household income. To do so we compare 12-hour-ahead wind forecasts with real-time 

observations for two HRRR model transitions (i.e., when one model is operational and the 

other is being tested). We compare estimates of actual and predicted wind power under the 

publicly available and developmental models, with reduced forecast errors allowing for better 

utility decision-making and lower production costs. We then translate potential cost savings 

into electricity price changes, which are entered as exogenous shocks to eight regional 

Computable General Equilibrium (CGE) models constructed for the U.S. Overall, we find that 

households would have seen a potential $60 million increase in real income for our sample 

(13 percent of all contiguous US  land-based turbine capacity) had the updated HRRR models 

been in place during the two transition periods; applying our estimated savings for the sample 

of turbines to the entire array of turbines shows a  potential real household income increase 

of approximately $384 million during these time frames.
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1. Introduction 1 

 2 

Each year the U.S. government makes significant investments to improve the accuracy of 3 

weather forecast models. The National Oceanic and Atmospheric Administration (NOAA) is the 4 

lead institution in these endeavors. Although the primary purpose is to protect life and 5 

property, these models inform a large variety of economic decisions. In this paper we examine 6 

how electric utilities can benefit from improved wind-speed forecasts to more efficiently 7 

integrate wind-generated power into the electric grid and lower electricity prices, leading to 8 

increased economic activity. 9 

 10 

In the U.S., wind power is an important, low-cost contributor to the electricity grid, and its 11 

share of total production is steadily increasing. However, because it is intermittent, wind power 12 

generation can be highly variable. Accordingly, an increased reliance on wind can make it more 13 

difficult for utilities to optimize their production decisions across their portfolio of sources (e.g., 14 

wind, gas and coal). Better wind-speed forecasts allow a cost-minimizing utility to optimize the 15 

mix of their own production sources, potentially reducing or eliminating the need to purchase 16 

electricity on the typically more expensive spot-market when own-supply falls short of demand. 17 

When these lower costs are passed onto users, the economy benefits.  18 

  19 

We pursue this analysis in several steps. First, we document the increased savings afforded to 20 

utilities through improved wind forecasts. To do so, we compare potential wind power 21 

estimates under various versions of a prominent weather forecasting model developed and run 22 

operationally by NOAA. The High Rapid Resolution Refresh (HRRR) model provides hourly-23 

updated weather forecasts for every 3km-by-3km grid in the contiguous US, up to at least 18 24 

hours in advance (the most recent version of the HRRR provides a 48-hour forecast every 6 25 

hours, with 18-hour forecasts provided for the other initialization times; for more detail see 26 

Dowell et al. (2021)). Here we evaluate forecast improvements by exploiting the fact that when 27 

NOAA introduces a new version of HRRR to operational status within the National Weather 28 

Service, it tests the model for approximately a year, while the previous variant continues to 29 

provide public forecasts.  30 

 31 

Using geo-located data on every wind-turbine in the contiguous United States (CONUS)-- 32 

including capacity--we match up the 12-hour-ahead wind forecasts from each version of the 33 

HRRR model with observed wind-speeds near the turbines to generate both predicted wind 34 

power output and estimates of actual wind power output. We are interested in the differences; 35 

i.e., when the predicted wind power over- and under-estimates the actual wind power. In the 36 

overestimation case, utilities will produce less electricity from the turbine than expected. When 37 

such “mistakes” are made, utilities must turn to the spot market, which can be expensive if the 38 

marginal generation source is fossil-fueled. In the underestimation case, utilities have 39 

committed to more expensive sources, and costs needlessly rise.  40 

 41 

We then turn our attention to estimating how such cost savings can benefit electricity users. 42 

We introduce this linkage in a computable general equilibrium (CGE) model that estimates a 43 

variety of economic impacts (e.g., output, employment and wages) due to changing electricity 44 
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prices in eight different Bureau of Economic Analysis (BEA) regions of the U.S. We find that the 1 

cost savings achieved through better wind forecasts can lead to slight declines in electricity 2 

production costs and prices that can lead to small, but important economic gains nationwide. 3 

 4 

In the next section, we review the related literature, emphasizing: i) the impacts of increased 5 

wind penetration and improved wind forecasts on wholesale electricity prices, and ii) the 6 

approaches some others have used to simulate the economy-wide impacts of changing 7 

electricity prices. In section 3, we describe the basic economic problem. Specifically, utilities 8 

must commit in advance to providing electricity using the power sources amongst their 9 

portfolio that allows them to meet expected demand at the lowest cost possible, subject to the 10 

uncertainty inherent in wind and solar production. We also present the eight region CGE model 11 

used in our analysis. Electricity is a key sector in these models, and we describe how price 12 

changes can affect economic activity. In section 4, we describe a state-of-the art weather 13 

forecast model developed by NOAA and estimate the (potential) cost savings arising from 14 

improvements in wind speed forecast accuracy. Section 5 presents the cost savings and fall in 15 

retail electricity prices.  In section 6, we describe how the simulations are set up and the results 16 

from a series of economic simulations where we reduce electricity prices—arising from cost 17 

savings owing to improved wind forecasts. Section 7 is our conclusion.    18 

 19 

2. Literature review 20 

 21 

We review papers that examine i) the effects of increased wind penetration on electricity 22 

wholesale prices and price volatility, and ii) the effects of improved wind-speed forecasts on 23 

reducing price volatility through improved predictability. Overall, these papers suggest 24 

improved wind forecasts can indeed lower electricity prices. Typically, these approaches are 25 

partial equilibrium, as they look at only the effects in the electricity market. General 26 

equilibrium models provide a broader approach, looking at how price changes in one sector 27 

reverberate through the overall economy. The second section describes several models used 28 

to examine the economic impacts of changing electricity prices. These models are kindred 29 

spirits to the one we use in our analysis but have not been used to evaluate improved wind-30 

speed forecasts. Our paper’s primary contribution is integrating the two topics that we review 31 

here. 32 

 33 

2.1 Wind penetration, electricity prices and improved forecast accuracy 34 

 35 

Several studies show an increase in the share of electricity produced from wind power can 36 

reduce electricity prices (e.g., De Miera et al. (2008), Quint and Dahlke (2019), Csereklyei et al. 37 

(2019)). Despite wind power’s lower marginal cost, intermittency impedes its full adoption. 38 

One pecuniary effect is an increase in electricity price volatility, which can increase the 39 

financial burden on producers via increased risk management costs (Woo et al. (2011), 40 

Ketterer (2014)). Chao (2011) simulates various pricing strategies to help better deal with 41 

uncertainty due to intermittency.  42 

 43 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
8
1
9
0
5

 09 January 2024 20:41:50



Accepted to J. Renew. Sustain. Energy 10.1063/5.0081905

 3 

 

Three notable studies of German electricity markets relating forecast accuracy and pricing 1 

bear attention. Gürtler and Paulsen (2018) show that better renewable power forecasts 2 

reduce price volatility in both day-ahead and intraday markets, with forecasting errors in wind 3 

power inducing substantial changes in both market prices, which they quantified at 1-to-5 4 

€/MWh per GWh forecasting error. Hagemann’s (2015) study indicates that wind forecasting 5 

errors have larger impacts on intraday prices than power outages and solar forecasting errors, 6 

ranging from 2-to-3 €/MWh per GWh forecasting error. Kulakov and Ziel (2019) find wind 7 

forecasting errors increase both intraday prices and intraday price volatility in a non-linear 8 

manner. For Norway and Denmark, Karanfil and Li (2017) investigate causality between wind 9 

power forecast errors and the price difference between the day-ahead and intraday markets , 10 

documenting a negative causal relationship from wind forecast errors to intraday price, which 11 

differs from the day-ahead market price. 12 

 13 

For the U.S., Martinez-Anido et al. (2016) use the Independent System Operator-New England 14 

(ISO-NE) production cost model to show that over-forecasting wind generation increases 15 

electricity prices while under-forecasts reduce them. Kiesel and Paraschiv (2017) estimate the 16 

impact of updated wind and photovoltaic (PV) forecasting from the most-current weather 17 

forecasts on the intraday spot price at the EPEX. In particular, the higher expected volume of 18 

wind and PV in the day-ahead market yields the higher demand quote, where electricity 19 

producers plan less traditional capacity. Intuitively, negative forecasting errors lead to 20 

increased intraday prices, while prices decrease in positive forecasting errors. See Swinand 21 

and O'Mahoney (2015) and Goodarzi et al. (2019) for more examples of reduced wind forecast 22 

errors leading to a more efficient use of wind.  23 

 24 

2.2 Modeling the economic impacts of electricity price changes 25 

 26 

Although CGE models are widely used for policy analysis, model specification and refinement 27 

are important themes in the academic literature. Early CGE models were often “top-down,” 28 

meaning that economic sectors were often highly aggregated, with little attention paid to the 29 

unique aspects of any particular one, including the electricity sector. When applied to energy 30 

issues, the focus was often on the demand side, considering how various consumer groups 31 

(e.g., commercial, residential) would be affected by energy price increases. For example, 32 

Bergman (1988) examines the impact of a hypothetical 50 percent increase in electricity prices 33 

in Sweden, which is modeled such that output prices reflect, in part, the various input prices. 34 

Output price increases subsequently impact households both directly (through lower real 35 

income) and indirectly (through labor market impacts).  36 

 37 

Within the “economics of climate change” literature, CGE models are widely used in renewable 38 

energy policy analysis, with the increased penetration of renewables being one of the more 39 

researched topics. For example, Bohringer and Loschel (2006) consider the economic and 40 

environmental effects of promoting renewable energy in the European Union. Dai et al. (2016) 41 

look at the viability of increased wind penetration by 2050 on a global scale, linking a CGE 42 

model with an onshore wind resource model to investigate the impacts of new investments 43 

through 96 unique scenarios. Cohen and Caron (2018) consider a similar question for the 44 
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United States, estimating the welfare and distributional impacts of increased investment in 1 

wind power. CGE models are also widely used to estimate the impacts of carbon taxes. For 2 

example, Coxhead et al. (2013) examine such a policy in Vietnam via ad valorem tax changes on 3 

coal and refined fuels, while Jorgenson et al (2015) examine the impacts of a tax on emissions 4 

in the U.S. Additionally, CGE models can be used to examine (directly, at least) non-pecuniary 5 

policy changes, such as emissions trading (Elkins and Baker (2001)). Kat et al. (2018) construct a 6 

CGE model for Turkey to simulate the economic impacts of following the guidelines of the 2015 7 

Paris Agreement. The transition away from fossil fuels and towards renewables causes a slight 8 

increase in electricity prices, resulting in a 0.8 – 1.0 percent fall in economic activity.  9 

 10 

Some modeling efforts (e.g., “top-down/bottom-up” or hybrid models) dis-aggregate the 11 

electricity sector using technology-specific production functions to allow for important 12 

differences in alternative generation technologies (e.g., wind versus gas) (Wing (2006), Cai and 13 

Arora (2015)). By incorporating specific production technologies, producers can substitute 14 

among alternative sources to meet expected demand, based largely on relative changes in 15 

production costs (e.g., Bohringer and Loschel (2006)). In some cases, these changes are 16 

exogenous (such as imposing a carbon tax); in other cases, relative price changes are 17 

determined by changes in supply arising from increased subsidies or investment (e.g., Cohen 18 

and Caron (2018)). In a similar vein, Nong (2018) uses the GTAP-E-PowerS CGE to examine the 19 

impacts of a carbon tax in South Africa to help transition to renewable energy. They show that 20 

increasing electricity prices results in a small decline in economic activity.    21 

 22 

3. The Decision-maker’s Cost Minimization Problem 23 

 24 

In order to meet the expected demand, utility operators need to schedule in advance the 25 

amount of power they can generate from various sources. In the short run, we assume that 26 

utilities follow “merit order”; that is, they choose amongst their portfolio of power generation 27 

options to minimize the marginal cost of producing any particular level of output. For example, 28 

if a utility has three power sources in its portfolio, it will compare the marginal costs across the 29 

three, producing as much as possible from its lowest cost source, then moving on to its next 30 

cheapest source, etc. Although some generation capacities are easily modeled due to 31 

certainties in production capacity and input availability (e.g., coal and natural gas), others are 32 

subject to greater uncertainty, due to stochastic fluctuations in input availability (e.g., wind and 33 

sunshine).  34 

 35 

Recent research shows that, over the past several years, wind and solar power have relatively 36 

low marginal production costs compared to  nuclear, natural gas, and coal (Lazard 2020). 37 

Because of this (and the fact that they have no emissions), renewable energy is a favored 38 

power source by utilities seeking to provide low-cost electricity. However, a greater uncertainty 39 

in predicted output--combined with the necessity to provide power when it is needed--means 40 

the utility manager faces a difficult problem in trading-off higher costs with more certain 41 

production.  42 

 43 

 44 
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 1 

In Figure 1, we provide an overview of the general problem. We assume that utility managers 2 

use wind-speed forecasts to develop estimates of expected wind energy production. We refer 3 

to these energy forecasts as “commitment”: the amount of electricity the utility commits to 4 

producing from wind from its total generation portfolio. “Better” forecasts reduce error, 5 

thereby improving decision-making and reducing costs. Meanwhile, poor forecasts--especially 6 

when the wind doesn’t blow as hard as it is expected to--can be very costly to remedy, as 7 

power companies often need to turn to the spot-market when they cannot produce an 8 

adequate supply from their own portfolio. In our analysis, the HRRR model is the sole source of 9 

12-hour-ahead wind forecasts, and actual wind-speeds are measured at Meteorological 10 

Aerodrome Reports (METAR) stations “near” the wind turbines. 11 

 12 

Figure 1. The decision-maker’s problem 13 

 14 

4. Assessing Wind Forecast Accuracy and Its Impact on Power Generation 15 

 16 

NOAA’s HRRR model generates the hourly wind-speed forecast data we use in this paper. Since 17 

2014, the HRRR model has served as one of the foundational components for local weather 18 

forecasts across the United States. HRRR forecasts are made at the 3km-by-3km scale over the 19 

contiguous United States. The model is initialized every hour, assimilating radar, radiosonde, 20 

METAR, aircraft, and other data, and produces hourly forecasts out to at least 15 hours for each 21 

initialization (later versions of the model produce longer forecasts (e.g., out to 36 hours) at 22 

regular intervals). For our analysis, we utilize 12-hour-ahead forecasts of wind-speeds for each 23 

hour of the day. 24 

 25 

Between 2015 and 2018, NOAA created three new HRRR versions (i.e., HRRR1, HRRR2 and 26 

HRRR3) (Dowell et al. 2021). Each version is tested extensively against a wide range of 27 

observations before being released to the public (Turner et al (2020)). Testing includes 28 

simultaneously running the new and previous HRRR versions and recording both forecasts.  For 29 

the primary differences between the versions of HRRR, see Table 2 in Turner et al. (2021).  30 

To evaluate improvements on the wind power forecasts, we analyze the reported wind 31 

forecasts for the periods of overlap between HRRR versions. For example, there was 32 

approximately a 15-month testing overlap between HRRR1 and HRRR2 (June 2015 to August 33 

2016). During this period, the operational forecasts reported to the general public were from 34 

HRRR1, but experimental HRRR2 forecasts, which were being generated as part of the 35 

testing/release process, were also stored on NOAA servers. Analogously, we examined the July 36 

2017 to June 2018 for the overlap period between HRRR2 and HRRR3. The overlap periods 37 

present a convenient experiment for evaluating the potential economic impacts of improved 38 

wind forecasting. Unfortunately, forecast data was not available for every hour between 2015 39 

and 2018. The servers running and storing the experimental HRRR model forecasts sometimes 40 

required maintenance; although forecasts were still made during maintenance periods, they 41 

were not stored. As a result, about 10 percent of the forecast data from the experimental HRRR 42 

versions for the overlap periods was lost. 43 

 44 
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Observed wind-speed data for the concomitant time periods are collected from METAR 1 

stations. Thousands of METAR stations are spread across North America, recording hourly, 2 

providing single coordinate location observations of wind-speed, measured in meters per 3 

second. Thus, observed wind-speeds can be compared to the HRRR forecast wind-speeds 4 

based upon geographic location.  These observations, and the HRRR-forecasted winds, 5 

were made at 10-m above the surface, and are used as a proxy for the wind speeds at 6 

turbine hub height (which is between 80 to 100 m) due to the paucity of publicly available 7 

observed wind speeds at those heights. 8 

 9 

Wind turbine data are reported by the United States Geological Survey (USGS). This 10 

dataset provides geographic coordinates for all land-based and offshore turbines in the 11 

United States and their capacity. Because HRRR forecasts, METAR stations and USGS Wind 12 

Turbine data all have geographic markers, we can associate them with one another using 13 

geographic information system (GIS).  14 

 15 

There are approximately 65,000 wind turbines in the Unites States, about 55,000 of which 16 

are land-based. However, because wind-speeds can vary greatly over relatively small 17 

geographic distances, we limit our set of turbines to those within a “reasonable distance” 18 

(i.e., 20km radius) from a METAR station, eliminating the remainder from our analysis. 1 A 19 

key assumption is that the reported wind-speeds are consistent for all wind turbines within 20 

the 20km zones surrounding a given METAR station. A limitation of this technique is that it 21 

restricts the number of METAR stations used in the analysis to 245 and the number of wind 22 

turbines to 8,435 (about 15.5 percent of the land-based US wind turbine count, or 13 23 

percent of installed capacity). However, in order to include more turbines, we need to 24 

extend the radius. In such cases, METAR readings may not accurately reflect actual wind-25 

speeds at the turbine.   26 

 27 

Figures 2a and 2b portray the distribution of wind turbines across the United States, 28 

without and with the 20km buffer restriction, respectively. These images suggest that the 29 

distribution of wind turbines for the 20km buffer zone restriction is relatively consistent 30 

with that of all wind turbines. Overall, wind production is most prominent in the upper 31 

Midwest and south-central states (described more below). 32 

 33 

Figure 2a. All land-based wind turbines, 2019 34 

Figure 2b. Wind turbines within 20 km buffer 35 

 36 

For our economic modeling (described in Section 6), we disaggregate the CONUS into eight 37 

economic regions (Figure 3), as defined by the Bureau of Economic Analysis. We chose BEA 38 

regions as they are commonly referenced economic units in the U.S., and allow for sub-national 39 

 
1 The HRRR’s horizontal grid-spacing is 3 km, but its true resolution is about 6-to-8 times larger (i.e., 18-to-24 km) 

(Skamarock 2004). Thus, we chose 20 km as compromise between representing the HRRR’s spatial resolution 
properly and being as close to the observation sites as possible. 
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economic heterogeneity. We assign the wind turbines shown in Figure 2b and the relevant 1 

METAR stations to their host economic region.  2 

 3 

Figure 3. The Eight Bureau of Economic Analysis Region 4 

    5 

We provide select economic and wind generation statistics for each of the eight regions in 6 

Table I. In the first two data columns, we see that the employment and GDP total are largest in 7 

the Southeast and smallest in the Rocky Mountain region. According to U.S. Energy Information 8 

Administration (EIA), and consistent with Figure 2a, the Plains region led the nation in installed 9 

wind capacity, with 12,948 turbines capable of producing 22.6 GW. In contrast, only 499 wind 10 

turbines were located in the Southeast region.  11 

 12 

Translating improved wind forecasts into better estimates of daily generation capacity 13 

 14 

With the data described, our first objective is to determine if predicted electricity output 15 

forecasts improve as the HRRR model evolves. To do so, we compare predicted (expected) 16 

power under various wind forecasts (e.g., HRRR2 versus HRRR3) with estimates of actual 17 

(potential) output. Forecast accuracy improves as: 18 

 19 Forecast error =  |Actual Output –  Predicted Output| → 0           (1) 20 

 21 

Rather than measuring wind-speed forecasts error themselves, we consider the error in wind 22 

energy production forecasts, relying on a wind-speed-to-power conversion equation (Wilczak 23 

(2019)), 24 

 25 𝑃𝑜𝑤𝑒𝑟 = {0,                   𝑖𝑓 0 ≤ 𝑆 < 3 , 𝑜𝑟 𝑆 > 25                                                                 1,                           𝑖𝑓 16 < 𝑆 ≤ 25                                                                          𝐶0 + 𝐶1𝑆 + 𝐶2𝑆2 + 𝐶3𝑆3 + 𝐶4𝑆4 + 𝐶5𝑆5 + 𝐶6𝑆6 + 𝐶7𝑆7, 𝑖𝑓 3 ≤ 𝑆 ≤ 16  (2) 26 

 27 

where power is the normalized power values (or production as percentage of capacity) for 28 

different wind-speeds, 𝑆 is the wind-speed in m/s (meters per second), and 𝐶0 to 𝐶7 are 29 

estimated coefficients (see Wilczak (2019) for specific coefficients).  30 
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Table I. States, number of MSAs, total turbine capacity, and number of turbines within each BEA region (2018) 

BEA 

Region States 

Regional 

employment 

(millions) 

 

Regional 

GDP 

(trillions of $) 

Total 

regional 

turbine 

capacity 

(kW) 

Number of 

regional 

turbines 

Turbine 

capacity within 

20km buffer 

zone (kW) 

(% of total) 

Number of 

turbines within 

20km buffer zone 

(% of total) 

New 

England  

CT, ME, MA, NH, 

RI, VT 9.99 1.09 1,434,065 650 

210,765 

(14.7%) 

123  

(18.9%) 

Mideast  
DE, DC, MD, NJ, 

NY, PA 31.23 3.72 3,408,460 1,873 

171,275  

(5.0%) 

79  

(4.2%) 

Great 

Lakes  
IL, IN, MI, OH, WI 

28.34 2.77 9,800,118 5,629 

1,204,288 

(12.3%) 

709 

(12.6%) 

Plains  
IA, KS, MN, MO, 

NE, ND, SD 14.07 1.29 22,555,838 12,948 

2,533,352 

(11.2%) 

1,461 

(11.3%) 

Southeast  

AL, AR, FL, GA, KY, 

LA, MS, NC, SC, 

TN, VA, WV 49.29 4.35 922,880 499 

83,280  

(9.0%) 

53 

(10.6%) 

Southwest  AZ, NM, OK, TX 
24.88 2.45 32,786,460 17,789 

3,755,350 

(11.5%) 

2,184 

(12.3%) 

Rocky 

Mountain  

CO, ID, MT, UT, 

WY 8.05 0.72 6,699,610 4,229 

700,370 

(10.5%) 

404  

(9.6% 

Far West  
AK, CA, HI, NV, OR, 

WA 34.43 4.11 12,316,156 10,811 

3,048,176 

(24.7%) 

3,422  

(31.7%) 

Totals 
 200.28 20.5 89,923,587 54,428 

11,706,856 

(13.0%) 

8,435 

(15.5%) 

Sources: GDP and Employment figures are taken from the Bureau of Economic Analysis (2018). Wind turbine and capacity figures are 

collected from the US Energy Information Administration (EIA, 2018). 
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Figure 4 shows the wind-speed-to-power conversion curve from equation (2). As an example, if 1 

a wind power utility owns 10 turbines, each with a capacity of 2 MW, a 10 m/s wind-speed for 2 

one hour means these turbines can generate 80 percent of their capacity, or 1.6 MWh. Note 3 

that there is no power generated when the wind-speed is less than 3 meters per second, as the 4 

wind is too slow to generate electricity. When the wind-speed is greater than 25 meters per 5 

second, a turbine is shut off so as to avoid damage. These two cases are eliminated from our 6 

analysis. Wind-speeds between 16 and 25 meters per second allow a turbine to produce at its 7 

full capacity. Note that we do not account for potential interactions among the turbines (e.g., 8 

the development of a wake that impacts the power derived from downstream turbines) in our 9 

analysis.  10 

 11 

Figure 4. Normalized Power Curve for an average of several International Electrotechnical 12 

Commission (IEC) class 2 wind turbines 13 

 14 

We consider two types of forecast errors.  Overprediction errors are those where the 12-hour 15 

wind-speed forecasts are greater than the observed wind-speed. In such cases, the utility has 16 

overcommitted to wind power, meaning that it is unable to meet actual demand when the 17 

electricity is needed. Table II presents the forecast errors for the first overlap period. The most 18 

notable aspect of the HRRR1/HRRR2 transition is that the forecast error for HRRR2 has 19 

diminished substantially compared to using HRRR1. Excluding the Southeast which produces 20 

little wind energy, New England experienced a decline in the forecast error by a factor of eight. 21 

For the HRRR2/HRRR3 period, there are reductions in the forecast error for HRRR3 (Table II), 22 

but it is not as dramatic as the HRRR1/HRRR2 case.  23 

 24 

An underprediction error arises when the forecasted output is less than actual (potential) 25 

output (i.e., the wind blows harder than predicted). In Table III we provide the estimated sum 26 

of the hourly forecast errors between HRRR1 and HRRR2 and HRRR2 and HRRR3 for each of the 27 

eight economic regions. The gains in accuracy are greater for HRRR2 compared to HRRR1 than 28 

for the HRRR2/HRRR3 case. However, the gains in the overprediction case far exceed the gains 29 

in the underprediction case.  30 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
8
1
9
0
5

 09 January 2024 20:41:50



Accepted to J. Renew. Sustain. Energy 10.1063/5.0081905

 10 

 

Table II. Overprediction (In thousands of MWh) 

BEA 

Region 

HRRR1 versus HRRR2 HRRR2 versus HRRR3 

Electricity 

generation  

HRRR2 

Error  
HRRR1 Error  

% of 

forecasting 

error from 

HRRR2 

% of 

forecasting 

error from 

HRRR1 

Electricity 

generation 

(MWh) 

HRRR3 

Error 

(MWh) 

HRRR2 

Error 

(MWh) 

% of 

forecasting 

error from 

HRRR3 

% of forecasting 

error from 

HRRR2 

New England 81.8 5.7          49.4  7% 60% 75.8 7.45 13.22 10% 18% 

Mideast 95.5  3.5           14.5  4% 15% 90.1 7.09 186.56 8% 15% 

Great Lakes 674.2    90.9         407.4  13% 60% 531.4 104.83 212.99 20% 35% 

Plains 2,368.7      91.7         396.0  4% 17% 1,960.9 104.62 2.63 5% 11% 

Southeast 14.6 2.3          26.9  16% 184% 12.3 1.23 326.65 10% 21% 

Southwest 3,363.4 184.4        812.4  5% 24% 3,132.3 169.25 36.69 5% 10% 

Rocky 

Mountain 
664.5 26.6 

       155.9  4% 23% 
621.3 15.63 325.63 3% 6% 

Far West 3,450.8 123.6        623.1  4% 18% 2,751.9 172.90 13.22 3% 6% 

Total 10,713.5 528.9     2,485.5   9,176.0 582.99 1,118.16   
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Table III. Underprediction (In thousands of MWh) 

BEA 

Region 

HRRR1 versus HRRR2 HRRR2 versus HRRR3 

Electricity 

generation 

(MWh) 

HRRR2 

Error 

(MWh) 

HRRR1 

Error 

(MWh) 

% of 

forecasting 

error from 

H2 

% of 

forecasting 

error from 

H1 

Electricity 

generation 

(MWh) 

HRRR3 

Error 

(MWh) 

HRRR2 

Error 

(MWh) 

% of 

forecasting 

error from 

H3 

% of 

forecasting 

error from 

H2 

New England 81.8 18.4 27.2 22% 33% 75.8 18.9 25.3 25% 33% 

Mideast 95.5 23.1 43.8 24% 46% 90.1 16.7 21.6 19% 24% 

Great Lakes 674.2 73.6 149.3 11% 22% 531.4 60.4 82.4 11% 16% 

Plains 2,368.7 400.4 794.2 17% 34% 1,960.9 281.7 396.5 14% 20% 

Southeast 14.6 3.0 4.9 21% 34% 12.3 2.6 3.4 21% 28% 

Southwest 3,363.4 617.3 1,166.8 18% 35% 3,132.3 463.7 646.1 15% 21% 

Rocky 

Mountain 
664.5 162.4 269.1 24% 41% 621.3 107.0 146.6 17% 24% 

Far West 3,450.8 649.4 1,283.2 19% 37% 2,751.9 468.4 648.7 17% 24% 

Total 10,713.5 1,947.6 3,738.5   9,176 1,419.4 1,970.6   
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5. Converting wind forecast errors into electricity price changes 1 

 2 

Previous research shows that increased wind penetration can lower electricity prices. In this 3 

section we describe how we convert reduced wind forecast errors into lower electricity prices, 4 

using a two-step procedure. In step one, we estimate the percentage reduction in total 5 

production costs that accrues due to improved wind forecasts. We begin step two by assuming 6 

that electricity sellers employ mark-up pricing (i.e., output prices are proportionately related to 7 

the marginal cost of production). We then simply apply the percentage cost reduction to the 8 

market price of electricity. Our assumption in step two is supported by general economic 9 

theory that says that prices should move with marginal costs, even in monopoly markets. 10 

 11 

For the first step, we simply divide the potential cost savings under each HRRR model transition 12 

by the total costs of production during the overlap period. Total production costs for the time 13 

frames of interest are calculated by summing estimated monthly production costs for each 14 

region. These costs are based on i) monthly data from the U.S. Energy Information 15 

Administration (EIA), which provides total production, by source, for each state, and ii) national 16 

levelized (average) production costs for each source (Table I). Total production costs, by region, 17 

are the sum product of the two (Table IV). Note that we do not have the cost data for energy 18 

produced by petroleum, biomass and other sources. However, the production cost calculated 19 

involves more than 95 percent of the total energy production. Therefore, omitting the cost of 20 

the three sources should not affect our estimation critically. 21 

 22 

Table IV. Total regional production costs during transition periods (in millions) 23 

 Total Production Costs During Transition Period  

BEA Region HRRR1 to HRRR2 HRRR2 to HRRR3 

New England 9,560 7,825 

Mideast 48,367 41,340 

Great Lakes 65,967 54,999 

Plains 35,507 28,452 

Southeast 131,899 105,509 

Southwest 63,609 48,275 

Rocky Mountain 18,897 13,810 

Far West 22,137 17,638 

Total 395,943 317,848 

 24 

5.1 Overprediction 25 

 26 

As defined above, overprediction errors are those where the 12-hour-ahead wind-speed 27 

forecasts are greater than the observed wind-speed. In such cases, the utility has 28 

overcommitted to wind power, meaning that it is unable to meet actual demand from their 29 

own sources when the electricity is needed. To correct this deficiency, the utility must turn to 30 

the spot market to purchase the shortage. The per megawatt costs of such “mistakes” are the 31 

difference between the price a utility pays to purchase a megawatt from the spot market and 32 

the marginal cost of production for wind (assumed $2/MWh). For example, if the spot market 33 
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price is $30, then the cost of a one MWh overprediction forecast error is $28. Equation (3) 1 

describes how we estimate potential cost savings in overprediction cases; the index j refers to 2 

the eight BEA regions. 3 

 4 

Potential cost savings (over)j = |(ΣjHRRR2 errorj – ΣjHRRR1 errorj)|*(spot pricej - $2.00)   (3) 5 

 6 

Ideally, equation (3) would incorporate observed daily spot price data; in practice, however, 7 

such data is quite limited. Instead, equation (3) is populated by “adjusting” readily available EIA 8 

day-ahead (i.e., inter-day) prices for each regional wholesale hub: Mid–C, PJM West, SP15-1 9 

(SP15-2), Palo Verde, Mass Hub, Indiana Hub, NP15, and ERCOT North (see Figure 5).  10 

 11 

Figure 5. Locations of Wholesale Hubs 12 

 13 

Regarding our adjustment, previous research shows that inter-day prices differ slightly from 14 

intraday prices, owing to the fact that day ahead predictions do not always meet real-time 15 

electricity demand. For example, Damien et al (2019) compare day ahead market prices with 16 

real-time prices in Texas (ERCOT) for the period 2011-2016, estimating daily forecast errors 17 

between 1.2 percent and 7.3 percent (these errors reflect risk premiums). In Table V we show 18 

the estimated average weighted daily spot prices for each region for the two model overlap 19 

periods. These are simply the average daily day-ahead prices for each hub, accounting for 20 

forecast errors. Lower bound estimates are the average day-ahead price times 101.2 percent, 21 

while upper bound estimates are the average day ahead price times 107.3 percent. In the 22 

interest of conservative estimation, we only use the lower-bound spot market price estimates 23 

for our analysis.  24 

 25 

Table V. The estimated lower- and upper-bound spot market electricity prices  26 

BEA Region Electricity Hub 

HRRR1 versus HRRR2 HRRR2 versus HRRR3 

lower bound 
upper 

bound 
lower bound upper bound 

New England Mass Hub $31.46 $33.42 $39.74 $42.22 

Mideast PJM West $32.63 $34.67 $37.33 $39.66 

Great Lakes Indiana Hub $29.09 $30.91 $36.33 $38.60 

Plains Indiana Hub $29.09 $30.91 $36.33 $38.60 

Southeasta PJM West, Indiana Hub $30.86 $32.79 $36.83 $39.13 

Southwest 
ERCOT North, Palo 

Verde 
$24.88 $26.43 $29.54 $31.39 

Rocky 

Mountaina 
Indiana Hub $29.09 $30.91 $36.33 $38.60 

Far West Mid-C, NP-15, SP-15 $27.86 $29.59 $38.57 $40.97 

a: These regions do not have an associated wholesale hub; we choose the nearest neighbor to 27 

approximate the local spot market price. 28 

 29 
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In Table VI we provide our savings estimates (equation 3) for each region due to reduced 1 

overprediction forecast errors. Overall, had HRRR2 been in place rather than HRRR1, savings 2 

due to reduced overprediction errors would have totaled $49.9 million (0.012 percent) during 3 

the overlap period.  4 

 5 

Table VI. Estimated Savings from More Accurate Wind Forecasting (overprediction) 6 

                 HRRR1 vs HRRR2 and HRRR2 vs HRRR3) 7 

 HRRR1 vs HRRR2 (lower-bound) HRRR2 vs HRRR3 (lower-bound) 

BEA Region 
Savings 

(in dollars) 

Savings as 

Share 

of Total Costs 

Price 

Adjustment 

Savings 

(in dollars) 

Savings as 

Share 

of Total Costs 

Price 

Adjustment 

New England 1,286,175 0.0135% 0.999865 238,793 0.0031% 0.999969 

Mideast 335,553 0.0007% 0.999993 216,598 0.0005% 0.999995 

Great Lakes 8,574,747 0.0130% 0.999870 2,806,232 0.0051% 0.999949 

Plains 8,245,311 0.0232% 0.999768 3,720,831 0.0131% 0.999869 

Southeast 708,776 0.0005% 0.999995 48,976 0.00005%  0.9999995 

Southwest 14,364,192 0.0226% 0.999774 4,335,420 0.0090% 0.999910 

Rocky Mountain 3,502,230 0.0185% 0.999815 723,263 0.0052% 0.999948 

Far West 12,913,449 0.0583% 0.999417 5,585,121 0.0317% 0.999683 

Total 49,930,433  0.0126%  17,675,233  0.0056%  

 8 

In Table VI we also show our price adjustments. We begin by showing savings as a share of total 9 

costs for each model transition. This is determined by dividing the value of savings shown in the 10 

first and fourth data columns of Table VI by values of total energy production costs shown in 11 

Table IV. To translate these cost changes into price changes we assume that cost savings are 12 

fully passed on to consumers in the form of lower electricity prices. We believe this assumption 13 

is reasonable both in real-time pricing markets, and in pre-set rate markets where prices and 14 

production costs should be highly correlated in the long-run.  15 

 16 

The price adjustment is calculated as 100 percent minus the percentage cost savings. Although 17 

these savings are small as a percentage, they are economically important in a $20 trillion 18 

economy. Had HRRR3 been in place rather than HRRR2, savings in the overprediction case 19 

would have totaled $17.67 million. Please note that the estimated savings in Table VI only 20 

represent 15.5 percent of U.S. land-based turbines (reasons for using a subset of turbines are 21 

mentioned in Section 4). Therefore, the real savings are greater than the numbers calculated 22 

and are discussed in the conclusion. 23 

 24 

5.2 Underprediction  25 

 26 

In this section, we focus on the cases when the wind blows more than expected but the utilities 27 

have already committed to producing electricity from costlier sources. Underprediction results 28 

in a financial penalty, as the utility could have used wind power instead of its next lowest cost 29 

option. These cost savings are calculated as: 30 

 31 
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Potential cost savings (under)j = (ΣjHRRR2 errorj – ΣjHRRR1 errorj)*($26.00)  (4) 1 

 2 

with the multiple $26.00 representing the difference between the marginal cost of producing a 3 

MWh of electricity from combined cycle gas—the next cheapest option—and wind (per Lazard 4 

(2020)). We chose the cheapest non-renewable resource as the next choice for a utility because 5 

we lack information on the specific portfolios for each utility. In some cases, a utility may have 6 

scheduled a more expensive “next best” option (e.g., coal), as they may not have natural gas as 7 

part of its portfolio. As such, these potential cost savings estimates are likely conservative. 8 

 9 

Table VII illustrates the cost savings from reduced underprediction due to accurate wind 10 

forecasting. Had HRRR2 been in place rather than HRRR1, utilities would have saved $46.6 11 

million. Had HRRR3 been in place rather than HRRR2, savings would have totaled $14.3 million 12 

due to reduced overprediction errors in the overlap period. Again, the estimated savings only 13 

show the result of 15.5 percent of wind turbines in our study during the overlap period. 14 

 15 

Table VII. Estimated Savings from More Accurate Wind Forecasting (Underprediction) 16 

BEA Region 

HRRR1 versus HRRR2 HRRR2 versus HRRR3 

Savings  

(in dollars) 

Savings as 

Share of Total 

Costs 

Price 

Adjustment 

Savings  

(in dollars) 

Savings as 

Share of 

Total Costs 

Price 

Adjustment 

New England  $       230,716  0.0024% 0.999999  $       165,584  0.0021% 0.999979 

Mideast  $       537,645  0.0011% 0.999989  $       127,649  0.0003% 0.999997 

Great Lakes  $    1,967,684  0.0030% 0.999970  $       571,100  0.0010% 0.999990 

Plains  $ 10,239,030  0.0288% 0.999712  $    2,984,752  0.0105% 0.999895 

Southeast  $         49,690  0.00004% 0.9999996  $          22,669  0.00002% 0.9999998 

Southwest  $ 14,288,882  0.0225% 0.999775  $    4,740,715  0.0098% 0.999902 

Rocky 

Mountain  $    2,775,561  0.0147% 0.999853  $    1,029,317  0.0075% 0.999925 

Far West  $ 16,479,790  0.0744% 0.999256  $    4,688,553  0.0266% 0.999734 

Total $  46,569,000 0.0118%  $   14,330,338 0.0045%  

 17 

6. Eight Regional CGE Models 18 

 19 

Computable general equilibrium (CGE) models can represent a national or regional economy, 20 

focusing on interactions among producers, households—who are both workers and consumers-21 

-and government. CGE models are founded in microeconomic theory and are used to describe 22 

how some economic change—either endogenous or exogenous—affects each set of economic 23 

actors. For example, a CGE model is useful to examine how electricity price increases affect 24 

residential customers, and subsequently businesses, when consumers have less spending 25 

power. Important economic indicators of interest include output (i.e., GDP), employment, real 26 

household income (i.e., income adjusted for price changes) and tax revenue. For a general 27 

review of CGE models, see Partridge and Rickman (2010); for a review of CGE models in energy 28 

economics, see Matsumoto and Fujimori, (2019); for model applications in climate change 29 

mitigation policies, see Babatunde, Begum and Said (2017).  30 
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 1 

In Cutler et al (2016) and Cutler, Shields and Davies (2018) we provide the particulars on the 2 

CGE model we use in our work, but we provide a brief overview here. The economics data 3 

collected is organized in a social accounting matrix (SAM) which describes the flow of economic 4 

activity between households, firms and the relevant government entity. For the commercial 5 

sectors, we use the two-digit North American Industry Classification System (NAICS) groups that 6 

consists of manufacturing, construction, retail, etc. The model consists of nine household 7 

groups, delineated by annual income. The lowest household group earns less than $10,000 8 

annually and the highest group earns more than $150,000 annually. 9 

 10 

The basic logic of the CGE model is that the commercial sectors employ workers, the workers 11 

bring the labor income to the households, and the households buy goods and services. The CGE 12 

model is calibrated when the model can exactly reproduce the data in the SAM and then 13 

simulations can be computed. The CGE model is identical for each BEA region but the SAMs 14 

organized for each region differ. We use the General Algebraic Modeling System (GAMS) 15 

proprietary software program to calibrate the model and run simulations. In the context of this 16 

paper, lower electricity prices due to the improved wind forecasts reduce the consumer price 17 

index for each household, resulting in an increase in real household income and thus an 18 

increase in household expenditures.  19 

 20 

In the U.S., the number of utility-scale wind energy installations has significantly increased, but 21 

the development differs across the country, based on the regional characteristics (e.g., the 22 

quality on-shore wind power resources (Brown et al. (2012)). To allow for regional 23 

heterogeneity, we decompose the country along the lines of eight sub-national Bureau of 24 

Economic (BEA) regions (Figure 3) and construct individual CGE models for each. (In Table I we 25 

provide a summary of economic statistics important to our models.) The Southeast has the 26 

nation’s largest share of total employment and real GDP levels, the Far West has the second 27 

largest, while the Rocky Mountain region has the smallest. 28 

 29 

The model’s consideration of electricity prices warrants particular attention, so we describe it 30 

here. On the production side, we assume profit maximizing firms operate in perfectly 31 

competitive output markets. Their constant returns to scale production technology employs a 32 

variety of inputs, including labor and capital, and intermediate inputs. The level of output and 33 

the relative input prices and their productivity affect the demand for each input. Electricity is 34 

one important input, and firms are sensitive to its price. Accordingly, lower electricity prices 35 

reduce the marginal cost of production, shifting a firm’s (industry’s) supply curve to the right. 36 

This increases firm output and lowers the market price of its good.  37 

 38 

There are two important effects. First, output increases lead to additional labor demand, 39 

providing households with additional jobs and wage income. Second, the economy’s price level 40 

(CPI) falls, with lower residential electricity prices leading to higher real household income. The 41 

effects on firms are reflected in the following equation: 42 

VI = V0IΠJ(PJTTJ (1 + ΣGSTAUCGS,J)/(P0J(1 + ΣGSTAUQGS,J)DELTA
J,I      (5) 43 
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 1 

Equation (5) describes the demand for intermediate inputs (Vi), where I is a matrix and it 2 

represents all commercial sectors (J is the transpose of I), and GS represents all government 3 

sectors. PJ is output prices. TAUCGS,I and TAUQGS,I are sales and property tax rates, and DELTA 4 

reflects own and cross price elasticities and ΠJ is the product operator. Any variable with a 0 at 5 

the end is a baseline value. For simulation purposes, the parameter TTI is a vector of ones in the 6 

base data, and is changed to represent exogenous electricity price changes. When TT is 7 

lowered, VI increases. 8 

Price change effects on households are reflected in the following two equations: 9 

CPIH = ΣIPI TTI(1 + ΣGSTAUCGS,I)CHI,H/ ΣI(P0I(1 + ΣGSTAUQGS,I))CHI,H      (6) 10 

 11 

CHI,H= CH0I,H((YDH/YD0H)/(CPIH/CPI0H))BETA
I,H ΠJ (PJTTJ(1 + ΣGSTAUCGS,J)/ 12 

            (P0J (1 + ΣGSTAUQGS,J)LAMBDA
J,I                                                                                                                                                (7) 13 

 14 

In equation (6) we show the impacts of electricity changes on economy wide price levels (CPIH). 15 

The index H represents households (distinguished by annual income), while CHI,H is household 16 

consumption across sectors and households. Here electricity price changes once again affect 17 

the economy price level through changes in TT. 18 

 19 

In equation (7) we see changes in real household consumption. Here, YD is real disposable 20 

income. Lambda is a square matrix of own and cross price elasticities. Although output demand 21 

equations are not specified here, it is important to keep in mind that changes in (7) affect local 22 

producers. Here, lower electricity prices affect consumption both directly, through changes to 23 

TT, and indirectly, through changes in the CPI (per equation 6). 24 

7. Select economic impacts of (potential) reductions in electricity prices facilitated by 25 

improved wind forecasts 26 

 27 

7.1 Setting up the simulations 28 

 29 

Previously, Kat, Paltsev and Yuan (2018) and Nong (2018) constructed detailed energy sectors 30 

to examine the change in energy prices as significant transitions occur out of fossil fuels and 31 

into renewables. Because our analysis emphasizes a much smaller adjustment in the use of 32 

wind, there is no need for detailed modeling of individual production technologies. Instead, we 33 

simply scale electricity prices. We do this by changing TTELECTRICITY to less than unity, based on 34 

the estimated cost savings shown in Tables VII and VIII. For example, in New England for the 35 

transition from HRRR1 to HRRR2, TT is changed from 100 percent to 99.9976 percent. There is 36 

some nuance of note--PELECTRICITY is an endogenous variable, but TTELECTRICITY scales down the 37 

price paid by households and firms.  38 

 39 

7.2 Simulation results 40 

 41 
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In our CGE model, we can report impacts on regional GDP and employment, household 1 

consumption, real household income and a myriad of other variables. For this paper, we report 2 

the impacts on real household income for two reasons. First, improved wind forecast accuracy 3 

reduces electricity prices and the consumer price index (CPI) faced by households. A reduced 4 

CPI results in current levels of household income to be able to purchase more goods and 5 

services which reflects an increase in real household income. This channel is the primary factor 6 

in the CGE model reflecting lower electricity prices. Second, focusing on household income 7 

provides a specific metric describing changes in household welfare. 8 

 9 

Also tied to increases in real household income is an increase in nominal household income 10 

which is the basis for changes in federal income tax revenue collected. This metric provides 11 

context of how investments in HRRR result in gains in federal government revenue.  12 

 13 

In Table VIII we provide simulated impacts of the price reductions resulting from lower 14 

overprediction errors. For the HRRR1-to-HRRR2 case, the aggregate increase in real household 15 

income across the eight BEA regions is $17.15 million, with the Far West benefiting by the 16 

largest amount ($8.1 million). The gains from the HRRR2-to-HRRR3 case are smaller as the 17 

improvement in forecast accuracy is relatively smaller between HRRR2 and HRRR3 than 18 

between HRRR1 and HRRR2. A similar comparison is arrived at for federal income tax revenue. 19 

Here, had HRRR2 been in place rather than HRRR1, reduced overprediction errors would have 20 

increased total federal tax revenue by $1.57 million during the overlap period.  21 

 22 

  23 
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Table VIII. Estimated Savings from More Accurate Wind Forecasting (Overprediction) 1 

BEA region 

        HRRR1 versus HRRR2                      HRRR2 versus HRRR3 

Household  

Income 

(millions of $) 

Federal 

Income Tax 

Revenue 

(millions of $) 

Household  

Income 

(millions of $) 

Federal  

Income Tax  

Revenue 

(millions of $) 

New England $1.91 $0.13              $0.11 $0.01 

Mideast 0.10 0.01 0.15 0.01 

Great Lakes 1.93 0.11 0.76 0.07 

Plains 1.68 0.10 0.95 0.10 

Southeast 0.14 0.00 0.01 0.00 

Southwest 2.81 0.04 1.12 0.05 

Rocky Mountain 0.48 0.14 0.18 0.01 

Far West 8.10 0.39 4.38 0.44 

Total 17.15 0.93 7.65 0.69 

 2 

In Table IX we present the results for the underprediction cases. During the transition period 3 

from HRRR1-to-HRRR2 household income would have been $16.7 million higher had the newer 4 

model been in use, supporting an additional $740,000 in federal tax revenue. During the 5 

transition from HRRR2 to HRRR3, gains to household income due to reduced underprediction 6 

errors would have totaled $18.25 million, and supported $1.37 million in additional federal tax 7 

revenue. The savings reported here are very small relative to the overall size of the regional 8 

economies. Thus, the real household impacts are small, but the aggregate impacts are notable. 9 

 10 

Note that the length of HRRR1-versus-HRRR2 period differs from the length of HRRR2-versus-11 

HRRR3 period. Also, since the two overlap periods were not observed at the same time, the 12 

CGE results for those overlap periods cannot be compared directly. 13 

  14 
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Table IX. Estimated Savings from More Accurate Wind Forecasting (Underprediction) 1 

BEA Region 

        HRRR1 versus HRRR2                      HRRR2 versus HRRR3 

Household  

Income 

(millions of $) 

Federal  

Income Tax 

Revenue 

(millions of $) 

Household  

Income 

(millions of $) 

Federal  

Income Tax  

Revenue 

(millions of $) 

New England 0.37 0.02 0.25 0.02 

Mideast 0.16 0.01 0.45 0.06 

Great Lakes 0.44 0.03 0.52 0.05 

Plains 2.09 0.12 3.09 0.35 

Southeast 0.01 0.00 0.02 0.00 

Southwest 2.80 0.04 5.18 0.15 

Rocky Mountain 0.51 0.01 1.08 0.06 

Far West 10.33 0.50 7.65 0.68 

Total 16.70 0.74 18.25 1.37 

 2 

Extrapolating the sample to the CONUS 3 

 4 

It is important to point out that we only evaluate approximately 13 percent of the installed 5 

wind capacity in the U.S. (turbines located within 20km of METAR stations), and our reported 6 

cost savings are based on this sample. Recall from Table II, however, that there were 7 

approximately 54,000 land-based turbines in the CONUS during the test period, while our 8 

sample consists of approximately 8,400 turbines. This is a large sample of the population in a 9 

statistical sense. Thus, there is a desire to estimate the economic impact of the improved 10 

forecasts over the entire land-based turbine dataset. 11 

 12 

Figures 2a and 2b show the population and sample of turbines across the country, respectively. 13 

Visual inspection suggests that the sample shown in Figure 2b appears to represent the entire 14 

population well, except for the Columbia Gorge along the Washington-Oregon border.  There is 15 

often significant wind energy resource in complex terrain, such as the Columbian Gorge (e.g., 16 

Shaw et al. 2019), so underrepresenting these regions with our subsampling adds additional 17 

uncertainty when scaling the results from the subset of 13% of the turbines to all of them. 18 

 19 

If we assume that the sample is representative of the population, we can estimate the overall 20 

economic impacts by scaling up our results. To do so, we use the ratio of turbine capacity within 21 

the 20km distance from the METAR stations to total regional turbine capacity (Table II) to 22 

calculate the relative size of the sample for each of the eight BEA regions. The ratios were as 23 

low as 4.2 percent for the Mideast and as high as 24.7 percent for the Far West.     24 

 25 

To scale-up our results to the population of CONUS turbines we multiplied the inverse of these 26 

ratios by the values for real household income and federal income tax revenue from Tables 9 27 

and 10 (over- and under-prediction) to estimate the potential gains from updates to the HRRR 28 

system for the entire country. For the HRRR1/HRRR2 overlap period, the potential gains to real 29 
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household income are $208.1 million, while federal income tax revenue would have potentially 1 

increased by $10.3 million. 2 

 3 

For the HRRR2/HRRR3 period, the use of HRRR3 benefits households for the over-and 4 

underprediction cases include a potential $26 million increase in real household income for the 5 

turbines in the sample. The scaling factor results in potential increases in real household 6 

income and federal income tax revenues of $176.7 and $13.5 million, respectively, over the 11-7 

month time period when the two versions were run simultaneously. 8 

 9 

8. Summary and conclusions 10 

 11 

The forecasts from the HRRR--which is run operationally by the National Weather Service-- 12 

provides foundational information used by the energy community in their day-ahead decision- 13 

making process. This study demonstrates how the continued development of the HRRR has a 14 

large economic impact for the energy community, and provides an important impetus to 15 

continue the development of storm-scale models like the HRRR for renewable energy 16 

applications. We forward a multidisciplinary approach to estimate the economic value of 17 

improved wind-speed forecasts on the integration of wind-generated power into the electric 18 

grid. First, we organize daily wind forecasts for overlapping periods from different versions of 19 

the HRRR weather prediction model system. We compare forecasts to actual wind-speeds 20 

recorded by METAR stations across the CONUS to calculate forecast errors. Actual and 21 

forecasted wind speeds are inserted into equations to reflect wind-generated electricity that 22 

utilities use to develop the cost minimizing optimal combination of all sources of electricity 23 

(fossil fuels, hydro, nuclear). Reductions in electricity prices are fed into eight BEA regional CGE 24 

models to estimate the economic impact of improved forecast accuracy.  25 

 26 

Our results show investments in improved wind-speed forecasts provide valuable positive 27 

impacts on economic activity. When comparing the HRRR2 (test model) to HRRR1 (operational), 28 

the combined impact of the over-and underprediction cases results in an approximately $34 29 

million potential increase in real household income. Given that we are only examining 13 30 

percent of the turbines in the U.S., our estimates are likely biased downward. Our proposed 31 

scaling method indicates that the gains from HRRR2 and HRRR3 are close to $200 million.   32 

  33 

The development of the HRRR system is also important in forecasting precipitation, 34 

temperature, and cloud cover. Hartman et al. (2021) estimates the savings in commuting time 35 

across the eight BEA regions with respect to improved HRRR precipitation forecasts and finds 36 

the economic savings is another $200 million. There are potentially other economic savings that 37 

can be accrued from the HRRR wind forecasts such as in the airline industry. Having improved 38 

wind forecasts permits the FAA to improve airline routes that minimize the impacts of 39 

headwinds in airline travel. Savings in travel time and fuel costs could be substantial. Another 40 

application is relying on improved precipitation forecasts that influences decisions on outdoor 41 

sporting events or family functions.   42 

 43 
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Our research opens several avenues for future work. We are currently organizing data 1 

regarding changes in cloud cover forecast accuracy for the HRRR4 system in order to evaluate 2 

more efficient use of solar energy in producing electricity. Future HRRR development also seeks 3 

to better model wind ramps (i.e., the rapid change in the wind speed over a short time period 4 

(e.g., 1-2 hours)). Unanticipated wind ramps can result in significant over- or under-estimation 5 

of the wind resource. We have shown in this paper that these two scenarios both have negative 6 

economic impacts on the utility. Thus, the utility greatly desires weather forecasts that indicate 7 

that there will be a wind ramp in the day-ahead forecast so that it can plan for the event. The 8 

analysis in this paper did not directly address wind ramps; they were included with the rest of 9 

the base statistics performed. We are currently looking at the economic impacts of better 10 

forecasting wind ramp events, which will be the subject of a future paper.  11 

 12 

More generally, there is a need for better understanding the impacts of increased wind and 13 

solar penetration on U.S. electricity markets, which will help validate our work. In this paper we 14 

examine a simple price change for electricity, driven by predicted savings in production costs. 15 

Although several papers have explored the effects of wind forecasts on electricity prices in 16 

Europe, this has not been done for the U.S., to the best of our knowledge. Future work should 17 

examine the extent to which the lessons learned in Europe apply to the U.S. One stumbling 18 

block is that it is difficult to obtain hourly price data for the assorted U.S. wholesale spot 19 

markets.  20 

 21 

 22 

  23 
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Figure 1. The decision-maker’s problem 
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Figure 2a. All land-based wind turbines, 2019    Figure 2b. Wind turbines within 20 km 

buffer 

   

 

 

 

 

 

 

 

 

 

Source: Image rendered in GIS using 2018 US Geological Survey wind turbine location, and 

capacity along with 2018 METAR station coordinates. 
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Figure 3: The Eight Bureau of Economic Analysis Region 

 

Source: BEA.gov 
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Figure 4. Normalized Power Curve for an average of several International Electrotechnical 

Commission (IEC) class 2 wind turbines.  

 
Source: Wilczak (2019) 
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Figure 5. Locations of Wholesale Hubs 
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